HOME> 创意工坊> 锂离子电池内部温度测量

锂离子电池内部温度测量

[1] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway [J]. Nature Communications, 2015, 6(1): 6924.

[2] ZHU J, WANG Y, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation [J]. Nature Communications, 2022, 13(1): 2261.

[3] LI M, LU J, CHEN Z, AMINE K. 30 Years of Lithium-Ion Batteries [J]. Advanced Materials, 2018, 30(33): 1800561.

[4] LIU Y, ZHU Y, CUI Y. Challenges and opportunities towards fast-charging battery materials [J]. Nature Energy, 2019, 4(7): 540-50.

[5] SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation [J]. Nature Energy, 2019, 4(5): 383-91.

[6] ZHU J, XU W, KNAPP M, et al. A method to prolong lithium-ion battery life during the full life cycle [J]. Cell Reports Physical Science, 2023, 4(7): 101464.

[7] DING S, LI Y, DAI H, et al. Accurate Model Parameter Identification to Boost Precise Aging Prediction of Lithium-Ion Batteries: A Review [J]. Advanced Energy Materials, 2023, 13(39): 2301452.

[8] LAMOUREUX T L. FLIGHT PROOFING TEST REPORT FOR MAIN MISSILE REMOTELY ACTIVATED PRIMARY BATTERY, E.S.B. DWG. NO. 27-06359-3, F, 1959 [C].

[9] KEDDAM M, STOYNOV Z, TAKENOUTI H. Impedance measurement on Pb/H2SO4 batteries [J]. Journal of Applied Electrochemistry, 1977, 7(6): 539-44.

[10] DENG Z, HUANG Z, SHEN Y, et al. Ultrasonic Scanning to Observe Wetting and “Unwetting” in Li-Ion Pouch Cells [J]. Joule, 2020, 4(9): 2017-29.

[11] SHAHJALAL M, SHAMS T, ISLAM M E, et al. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues [J]. Journal of Energy Storage, 2021, 39: 102518.

[12] NASCIMENTO M, PAIXãO T, FERREIRA M S, PINTO J L. Thermal Mapping of a Lithium Polymer Batteries Pack with FBGs Network [J]. Batteries, 2018, 4(4): 67.

[13] NASCIMENTO M, FERREIRA M S, PINTO J L. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions [J]. Applied Thermal Engineering, 2019, 149: 1236-43.

[14] KIM S, WEE J, PETERS K, HUANG H-Y S. Multiphysics Coupling in Lithium-Ion Batteries with Reconstructed Porous Microstructures [J]. The Journal of Physical Chemistry C, 2018, 122(10): 5280-90.

[15] YU Y, VINCENT T, SANSOM J, et al. Distributed internal thermal monitoring of lithium ion batteries with fibre sensors [J]. Journal of Energy Storage, 2022, 50: 104291.

[16] YANG G, LEITãO C, LI Y, et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage [J]. Measurement, 2013, 46(9): 3166-72.

[17] NASCIMENTO M, NOVAIS S, DING M S, et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries [J]. Journal of Power Sources, 2019, 410-411: 1-9.

[18] WAHL M S, SPITTHOFF L, MURI H I, et al. The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-ion Batteries during Operation [J]. Energies, 2021, 14(12): 3617.

[19] NASCIMENTO M, NOVAIS S, LEITãO C, et al. Lithium batteries temperature and strain fiber monitoring [M]. 2015.

[20] WEI Z, ZHAO J, HE H, et al. Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement [J]. Journal of Power Sources, 2021, 489: 229462.

[21] HUANG J, ALBERO BLANQUER L, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors [J]. Nature Energy, 2020, 5(9): 674-83.

[22] PENG J, JIN Y, JIA S, XU S. External Electrode Temperature Monitoring of Lithium Iron Phosphate Batteries Based on Fiber Bragg Grating Sensors [J]. IOP Conference Series: Earth and Environmental Science, 2020, 495(1): 012002.

[23] RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance [J]. Journal of Power Sources, 2017, 341: 466-73.

[24] FLEMING J, AMIETSZAJEW T, CHARMET J, et al. The design and impact of in-situ and operando thermal sensing for smart energy storage [J]. Journal of Energy Storage, 2019, 22: 36-43.

[25] FLEMING J, AMIETSZAJEW T, MCTURK E, et al. Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors [J]. HardwareX, 2018, 3: 100-9.

[26] LEE C-Y, LEE S-J, TANG M-S, CHEN P-C. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors [J]. Sensors, 2011, 11(10): 9942-50.

[27] MUTYALA M S K, ZHAO J, LI J, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples [J]. Journal of Power Sources, 2014, 260: 43-9.

[28] PAREKH M H, LI B, PALANISAMY M, et al. In Situ Thermal Runaway Detection in Lithium-Ion Batteries with an Integrated Internal Sensor [J]. ACS Applied Energy Materials, 2020, 3(8): 7997-8008.

[29] ZHU S, HAN J, AN H-Y, et al. A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries [J]. Journal of Power Sources, 2020, 456: 227981.

[30] MARTINY N, MüHLBAUER T, STEINHORST S, et al. Digital data transmission system with capacitive coupling for in-situ temperature sensing in lithium ion cells [J]. Journal of Energy Storage, 2015, 4: 128-34.

[31] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J]. Energy Storage Materials, 2018, 10: 246-67.本文来源:电化学数字电源实验室